省锡中实验学校 2021-2022 学年度第二学期

初三化学第一次适应性练习 2022年3月

命题人: 沈莉萍 审题人: 沈曦

注意事项: ①答案全部填在答题卷上。填写在试题纸上一律无效。

②本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共28小题。 考试形式为闭卷书面笔答。试卷满分为80分。

可能要用的相对原子质量: H: 1 C: 12 O: 16 Na: 23 Ca: 40 Cl: 35.5 Ag: 108

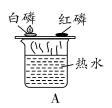
	为1位(选件应 六30 万7	
一、选择题 (本题包括	20 小题,每小题	只有1个选项符合题意。1~10	小题每小题 1 分,11~20
小题每小题 2 分, 共	ミ30分)		
1. 地壳中含量最多	的元素是		
A. 氧	B. 硅	C. 钙	D. 铁
2. 下列物质属于氧	化物的是		
A. H ₂ O	$B. O_2$	C. Na ₂ SO ₄	D. H_2CO_3
3. 75%的酒精属于			
A. 乳浊液	B. 悬浊液	C. 溶液	D. 以上均不是
4. 嫦娥五号执行的	下列探月任务一定	涉及化学变化的是	
A. 漫步月面	B. 采集月壤	C. 展示国旗	D. 点火返航
5. 在测定锌、铟等	元素的相对原子质	量方面做出卓越贡献的科学	家是
A. 拉瓦锡	B. 张青莲	C. 侯德榜	D. 卢瑟福
6. 下列物质的用途:	主要由其物理性质	决定的是	
A. 用氮气保存食	品 B. 生石灰作	F干燥剂 C. 用焦炭炼铁	D. 用石墨做电极
7. 下列物质的俗名	与化学式一致的是		
A. 生石灰: CaO	B. 水银: Ag	g C. 纯碱: NaHCO ₃	D. 火碱: Na ₂ CO ₃
8. 下列化学用语与	含义相符的是		
A. 3H: 3 个氢分子	B. Al: 氯元素	€ C. 2Na: 2 个钠原子	D. Mg ⁺² : 1 个镁离子
9. 锂元素在元素周	期表中的信息如图	所示,下列说法不正确的是	
A. 原子序数为3		B. 元素符号为 Li	
C. 属于金属元素		D. 相对原子质量为 6.9	941g
		试卷 第1页 共8页	\(\frac{1}{2}\)

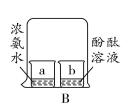
10. 下列实验操作不正确的是

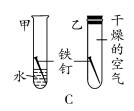
A. 检查气密性

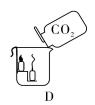
B. 蒸发

C. 测定溶液pH

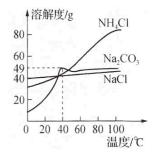

D. 过滤


- 11. 下列实验现象描述不正确的是
 - A. 打开浓盐酸的瓶盖,看到瓶口有白雾冒出
 - B. 红磷在空气中燃烧产生大量的白烟
 - C. 将硫酸铜溶液滴加到氢氧化钠溶液中能得到蓝色沉淀
 - D. 将溶有二氧化碳的石蕊试液加热煮沸,溶液由红色变为无色
- 12. 免洗手消毒液中含有正丙醇(化学式为 C₃H₇OH)。下列有关正丙醇的说法正确的是
 - A. 正丙醇属于碱


- B. 一个正丙醇分子中有 12 个原子
- C. 正丙醇中氧元素的质量分数最大 D. 碳、氢元素的质量比为 3:8
- 13. 对下列事实的解释合理的是
 - A. 6000 L O₂ 在加压的情况下装入容积为 40 L 钢瓶中——氧分子变小
 - B. 稀有气体可作电光源——稀有气体化学性质稳定
 - C. 金刚石和石墨的物理性质存在明显差异——碳原子排列方式不同
 - D. 稀盐酸能除铁锈——铁锈和稀盐酸能发生中和反应
- 14. 在溶液中,下列物质间的转化不能一步实现的是
 - A. $(NH_4)_2SO_4 \xrightarrow{NaOH} NH_3$
- B. $Mg(OH)_2 \xrightarrow{HCl} MgCl_2$


C. NaHCO₃ $\xrightarrow{\text{HCl}}$ CO₂

- D. NaNO₃ \xrightarrow{KCl} NaCl
- 15. 如图所示的 4 个实验,下列根据实验现象得出的结论不合理的是

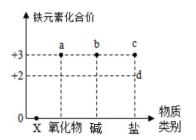


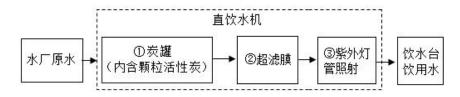
- A. 白磷燃烧,红磷不燃烧,说明白磷的着火点比红磷的着火点低
- B. 烧杯 b 中的酚酞溶液变红色,说明分子不断运动
- C. 甲试管中的铁钉生锈, 乙试管中的铁钉不生锈, 说明只需与水接触铁钉就会生锈
- D. 下层蜡烛先熄灭,说明二氧化碳不支持石蜡燃烧,且密度大于空气

初三化学试卷 第2页 共8页

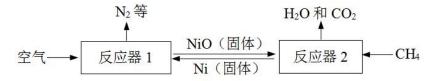
- 16. 右图为 NH₄Cl、Na₂CO₃、NaCl 三种物质的溶解度曲线,下列有关说法正确的是
 - A. 除去 NH₄Cl 中混有的少量 NaCl,可采用蒸发结晶
 - B. 40℃,饱和 Na₂CO₃溶液的溶质质量分数为 49%
- C. 40℃,将 Na₂CO₃饱和溶液进行降温或升温,都能使其溶质质量分数减小
- D. 80℃,分别将等质量的 NH₄Cl 和 NaCl 固体溶于适量的水, 恰好均配成饱和溶液,所得溶液的质量前者大于后者

- 17. 科学家设计了"人造树叶"模拟光合作用,其装置和反应的微观示意图如图。下列说法错误的是 催化剂
 - A. 反应物的分子个数比为 1:2
 - B. 该过程实现了太阳能向化学能的转化
 - C. 反应前后催化剂的化学性质不变
 - D. 该设计为缓解温室效应提供了新途径
- 一氢原子
 一氢原子
 一氧原子
 一载原子
 一碳原子
- 18. 将未打磨的铝片放入氯化铜溶液中,一段时间后,观察到铝片表面有红色物质析出,蓝色溶液变浅,有气泡产生,经检验气体为氢气,取出铝片。下列叙述错误的是
 - A. 铝片表面有致密的氧化物保护膜
- B. 反应前 CuCl₂溶液中含有两种阳离子
- C. 反应后 Cu²⁺全部转化为 Cu
- D. 铝的金属活动性比铜强
- 19. 某小组利用如图装置进行创新实验。实验时,先加热炭粉,一段时间后将酒精灯移至 CuO 处加热。下列说法错误的是 CuO 单充满 CO,
 - A. 酒精灯加网罩是为了提高火焰温度
 - B. 气球可以收集尾气, 防止污染空气
 - C. 反应过程中,黑色粉末变为红色固体
 - D. 装置中发生反应: C + 2CuO === 2Cu + CO₂↑
- 20. 取 24.8 g 过氧化银(Ag_2O_2)在真空条件下加热至固体质量不再发生变化,产生 3.2g O_2 ,固体质量随温度的变化如图所示(图中各点对应固体均为纯净物)。下列说法正确的是

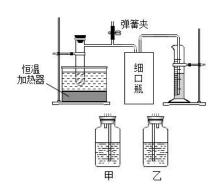

- B. Y点对应的固体中银元素和氧元素的质量比为 27:4
- C. Z→W 过程中产生的氧气质量为 2.4 g
- D. Z \rightarrow W 过程中发生的反应为 $2Ag_2O \xrightarrow{\Delta} 4Ag+O_2\uparrow$


初三化学试卷 第3页 共8页

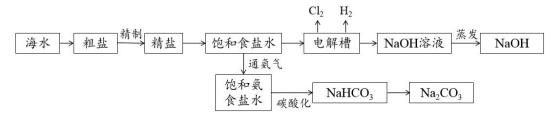
第Ⅱ卷 (非选择题 共50分)


- 21. (3分)铁及其化合物的"价类二维图"如右图所示。
 - (1) X 的物质类别是 ▲ 。
 - (2) a 点对应物质的化学式是 ▲ 。
 - (3) 铁和稀盐酸反应生成的含铁化合物属于图中的<u>▲</u>点 (填序号)。

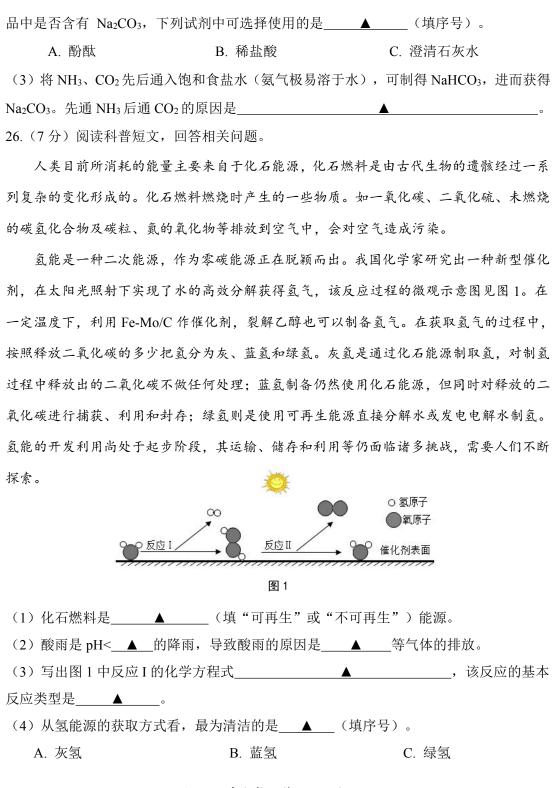
22. (3分)无锡很多小区都配备了直饮水机,为居民提供安全便捷的饮水服务。



- (1) 直饮水机主要水处理步骤如上图: ①中活性炭的主要作用是_____。
- (2) 超滤膜是直饮水机的核心技术,超滤膜上的孔径约为 0.001 微米,离子和水分子都可以通过,超滤膜 ▲ ("能"或"不能")将硬水软化。
- (3) 明矾是一种高效的絮凝剂,其化学式为 $KAl(SO_4)_x \cdot 12H_2O$,则 x 的值为 \triangle 。
- 23. (4分) 燃烧是人类最早利用的化学反应之一。
- (1)《墨经》中记载了"立窑烧烟法"制墨。将松木置于炉膛中燃烧,瓮中收集的烟可用于制墨。"立窑烧烟法"利用了松木的 ▲ (填"完全"或"不完全")燃烧。
- (2) "化学链燃烧"是利用载氧体在两个反应器之间的循环,实现燃料在较低温度下燃烧。以氧化镍(NiO)作载氧体的"化学链燃烧"过程如下:


初三化学试卷 第4页 共8页

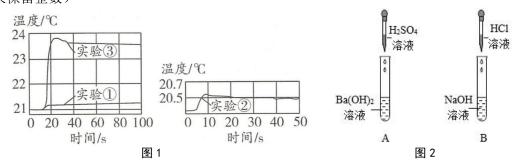
24. (6分) 双氧水分解存在多种催化剂,实验人员针对硫酸铜催化双氧水分解做了如下 4次实验。4次实验均向该装置试管中加入 10mL30%的过氧化氢溶液,实验 1、2、3 均向试管内加入 1mLCuSO4溶液和 1mL水,实验 4 仅加入 1mL水,实验数据见下表。


实验	水浴温	生成氧气的平均速率/(mL·min-1)				
序号	度/°C	第 3min	第 6min	第 9min	第 12min	
1	20	2.4	2.7	2.8	2.8	
2	30	9	10	10	10	
3	40	90	63	28	23	
4	40	1.0	1.2	1.3	1.3	

- (1)图中细口瓶应选择 ▲ (填"甲"或"乙")。
- (2) 实验需要测量的数据有:反应时间和____。
- (3)由实验 ▲ (填实验序号)可知硫酸铜可以加快双氧水分解速率。
- (5)下列有关该实验的说法正确的是 ▲ (填序号)。
 - A. 不可振荡反应液,确保反应液平稳释放 O₂
 - B. 由表中数据可知,实验1中到第9min反应结束
 - C. 细口瓶中不装满水对氧气速率的测定没有影响
 - D. 上述实验过程中, 双氧水的分解速率均在不断增大
- 25. (7分) 氯化钠是重要的化工原料,用于生产氢氧化钠、碳酸钠等,模拟流程如下。

- (1)通过海水晒盐得到的粗盐中常含有 $NaCl \setminus MgCl_2 \setminus CaCl_2$ 等物质,"精制"过程中需要加入 NaOH,目的是_____。
- (2) 将饱和食盐水装入电解槽,可制得氢氧化钠,写出"电解槽"中发生反应的化学方程式: ______。制得的氢氧化钠中常含有 Na₂CO₃,原因是______(用化学方程式表示)。检验氢氧化钠样

初三化学试卷 第5页 共8页


初三化学试卷 第6页 共8页

27. (10分)酸碱中和反应是初中阶段重要的一类反应,请你参与一起探究。

【实验1】从能量变化角度探究酸和碱的反应

某小组同学测量盐酸与氢氧化钠溶液反应过程中温度的变化,观察到溶液温度升高,因此,得出两者能反应的结论。有同学发现此结论不够严谨,在室温下设计了以下实验:

- ①10 mL 一定浓度的盐酸与 10 mL 蒸馏水混合,测量溶液温度的变化。
- ②10 mL 一定浓度的氢氧化钠溶液与 10 mL 蒸馏水混合,测量溶液温度的变化。
- ③10 mL 一定浓度的盐酸与 10 mL 一定浓度的氢氧化钠溶液混合,测量溶液温度的变化。 用数字化实验技术测得 3 个实验,溶液温度随时间变化的关系如图 1 所示。
- (1)由图1可知,盐酸、氢氧化钠溶液稀释时均<u>▲</u>(填"放热"或"吸热"),但它们稀释时温度的变化量远<u>▲</u>(填"大于"或"小于")两溶液混合时温度的变化量。
- (2)从微观角度分析,此中和反应的温度变化主要是由于_____(填离子符号)两种离子反应放出热量的缘故,由此说明氢氧化钠和盐酸发生了中和反应。
- (3) 在 10mL 溶质质量分数为 10%NaOH 溶液(密度为 1.1g/mL)加入溶质质量分数为 5% 的盐酸(密度为 1.0g/mL)的体积______mL,就能使反应后溶液的 pH 等于 7。(结果保留整数)

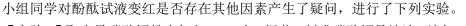
【实验 2】从溶液电导率变化角度探究酸和碱的反应

小组同学根据图 2 进行相应实验操作,利用电导率传感器分别测定 A 试管和 B 试管 反应过程中溶液的电导率变化,电导率的大小能反映离子浓度的大小。

(5) 表示 A 试管中溶液电导率变化的是______(填"图 3"或"图 4")。 (6) 图 4 中电导率的变化______(填"能"或"不能")说明酸和碱发生了反应,a 点所示溶液中含有的微粒有___

▲ (填微粒符号)。

电导率 (μS/cm)
15000
10000
300
时间/s


初三化学试卷 第7页 共8页

28. (10分) 石灰石是重要的化工原料。研究小组围绕石灰石进行了以下探究。

I.石灰石分解的探究

【实验1】取一小块石灰石用酒精喷灯煅烧(如图1所示,杂质煅烧时不发生变化)。

- (1) 煅烧石灰石时,在火焰上方倒扣一个涂有澄清石灰水的烧杯,石灰水变浑浊,产生 浑浊的化学方程式为________________。此实验能否推断石灰石煅烧产
- 生二氧化碳,并说明理由: ▲ 。

【实验 2】取少量碳酸钙粉末加入 2mL 水,振荡,制成碳酸钙悬浊液,滴加 2 滴酚酞试液,酚酞试液变红。加热后,溶液红色变浅,经测定 pH 减小。另一组同学测得在常温下五种混合体系的 pH,如下表所示。

混合体系	①Na ₂ CO ₃ 溶液	②NaCl 溶液	③CaCl ₂ 溶液	④CaCO₃悬浊液
рН	11.6	7.0	7.0	10.1

- (3) 根据实验 2, 你认为下列说法合理的是_____(填序号)。
 - A. CaCO3 悬浊液中有少量碳酸钙溶于水,形成碳酸钙的不饱和溶液
 - B. CaCO₃的溶解度随着温度的升高而降低
 - C. 分析上表各混合体系的 pH 可知, CaCO₃ 悬浊液使酚酞变红与其结构中的 CO₃²-有关
 - D. 加热时部分碳酸钙发生了分解反应

Ⅱ. 石灰石煅烧温度的探究

小组同学测定石灰石煅烧产物(CaO)的活性度(数据见下表):取一定质量的生石灰,加入一定量的水,用指定浓度的盐酸中和,记录所消耗盐酸的体积(单位为 mL),消耗盐酸的体积越大,"活性度"越高。

温度 时间 活性度	1050°C	1100°C	1150°C	1200°C	1250°C	1300°C
12min	790	836	868	808	454	412
16min	793	856	871	845	556	530
20min	795	863	873	864	617	623

(4) 石灰石煅烧的最佳温度范围为 1100℃~1200℃的证据是

III. 石灰石中碳酸钙质量分数的测定

(5)将 12g 石灰石在高温下充分煅烧,剩余固体质量为 7.6g,求该石灰石中碳酸钙的质量分数。(写出计算过程) ▲

初三化学试卷 第8页 共8页